Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.871
Filter
1.
J Med Chem ; 67(8): 6052-6063, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38592948

ABSTRACT

Akt kinase is vital in cell growth, survival, metabolism, and migration. Dysregulation of Akt signaling is implicated in cancer and metabolic disorders. In the context of cancer, overactive Akt promotes cell survival and proliferation. This has spurred extensive research into developing Akt inhibitors as potential therapeutic agents to disrupt aberrant Akt signaling. Akt inhibitors are classified into three main types: ATP-competitive, allosteric, and covalent-allosteric inhibitors (CAAIs). ATP-competitive inhibitors compete with ATP for binding to Akt, allosteric inhibitors interact with the Pleckstrin homology (PH) domain, and covalent-allosteric inhibitors form covalent bonds, making them more potent and selective. Notably, capivasertib (AZD5363), a potent ATP-competitive Akt inhibitor, received FDA approval in November 2023 for use in combination with the estrogen receptor degrader fulvestrant to treat breast cancer. Challenges remain, including improving selectivity, identifying biomarkers to tailor treatments, and enhancing therapeutic efficacy while minimizing adverse effects. Particularly covalent-allosteric inhibitors hold promise for future more effective and personalized treatments.


Subject(s)
Protein Kinase Inhibitors , Proto-Oncogene Proteins c-akt , Pyrimidines , Humans , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/therapeutic use , Proto-Oncogene Proteins c-akt/metabolism , Proto-Oncogene Proteins c-akt/antagonists & inhibitors , Pyrimidines/pharmacology , Pyrimidines/chemistry , Pyrimidines/chemical synthesis , Pyrimidines/therapeutic use , Allosteric Regulation/drug effects , Drug Approval , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/therapeutic use , Pyrroles/chemistry , Pyrroles/pharmacology , Pyrroles/chemical synthesis , Animals
2.
Molecules ; 28(14)2023 Jul 18.
Article in English | MEDLINE | ID: mdl-37513351

ABSTRACT

Secure and efficient treatment of diverse pain and inflammatory disorders is continually challenging. Although NSAIDs and other painkillers are well-known and commonly available, they are sometimes insufficient and can cause dangerous adverse effects. As yet reported, derivatives of pyrrolo[3,4-d]pyridazinone are potent COX-2 inhibitors with a COX-2/COX-1 selectivity index better than meloxicam. Considering that N-acylhydrazone (NAH) moiety is a privileged structure occurring in many promising drug candidates, we decided to introduce this pharmacophore into new series of pyrrolo[3,4-d]pyridazinone derivatives. The current paper presents the synthesis and in vitro, spectroscopic, and in silico studies evaluating the biological and physicochemical properties of NAH derivatives of pyrrolo[3,4-d]pyridazinone. Novel compounds 5a-c-7a-c were received with high purity and good yields and did not show cytotoxicity in the MTT assay. Their COX-1, COX-2, and 15-LOX inhibitory activities were estimated using enzymatic tests and molecular docking studies. The title N-acylhydrazones appeared to be promising dual COX/LOX inhibitors. Moreover, spectroscopic and computational methods revealed that new compounds form stable complexes with the most abundant plasma proteins-AAG and HSA, but do not destabilize their secondary structure. Additionally, predicted pharmacokinetic and drug-likeness properties of investigated molecules suggest their potentially good membrane permeability and satisfactory bioavailability.


Subject(s)
Cyclooxygenase Inhibitors , Hydrazones , Lipoxygenase Inhibitors , Pyridazines , Pyrroles , Hydrazones/chemical synthesis , Hydrazones/chemistry , Hydrazones/pharmacokinetics , Hydrazones/pharmacology , Cyclooxygenase Inhibitors/chemical synthesis , Cyclooxygenase Inhibitors/chemistry , Cyclooxygenase Inhibitors/pharmacokinetics , Cyclooxygenase Inhibitors/pharmacology , Pyridazines/chemical synthesis , Pyridazines/chemistry , Pyridazines/pharmacokinetics , Pyridazines/pharmacology , Pyrroles/chemical synthesis , Pyrroles/chemistry , Pyrroles/pharmacokinetics , Pyrroles/pharmacology , Humans , Fibroblasts , Computer Simulation , Cell Membrane Permeability , Cell Line
3.
J Med Chem ; 65(4): 3644-3666, 2022 02 24.
Article in English | MEDLINE | ID: mdl-35119851

ABSTRACT

We recently reported a potent, selective, and in vivo efficacious AKT degrader, MS21, which is a von Hippel-Lindau (VHL)-recruiting proteolysis targeting chimera (PROTAC) based on the AKT inhibitor AZD5363. However, no structure-activity relationship (SAR) studies that resulted in this discovery have been reported. Herein, we present our SAR studies that led to the discovery of MS21, another VHL-recruiting AKT degrader, MS143 (compound 20) with similar potency as MS21, and a novel cereblon (CRBN)-recruiting PROTAC, MS5033 (compound 35). Compounds 20 and 35 induced rapid and robust AKT degradation in a concentration- and time-dependent manner via hijacking the ubiquitin-proteasome system. Compound 20 suppressed cell growth more effectively than AZD5363 in multiple cancer cell lines. Furthermore, 20 and 35 displayed good plasma exposure levels in mice and are suitable for in vivo efficacy studies. Lastly, compound 20 effectively suppressed tumor growth in vivo in a xenograft model without apparent toxicity.


Subject(s)
Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/pharmacology , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/pharmacology , Proto-Oncogene Proteins c-akt/metabolism , Animals , Antineoplastic Agents/pharmacokinetics , Biological Availability , Cell Division/drug effects , Cell Line, Tumor , Dose-Response Relationship, Drug , Humans , Male , Mice , Mice, Nude , PC-3 Cells , Proteasome Endopeptidase Complex/drug effects , Protein Kinase Inhibitors/pharmacokinetics , Proteolysis , Proto-Oncogene Proteins c-akt/chemistry , Pyrimidines/chemical synthesis , Pyrimidines/pharmacology , Pyrroles/chemical synthesis , Pyrroles/pharmacology , Structure-Activity Relationship , Tumor Stem Cell Assay , Ubiquitin/genetics , Xenograft Model Antitumor Assays
4.
Bioorg Med Chem Lett ; 60: 128588, 2022 03 15.
Article in English | MEDLINE | ID: mdl-35104640

ABSTRACT

The Protein Kinase N proteins (PKN1, PKN2 and PKN3) are Rho GTPase effectors. They are involved in several biological processes such as cytoskeleton organization, cell mobility, adhesion, and cell cycle. Recently PKNs have been reported as essential for survival in several tumor cell lines, including prostate and breast cancer. Here, we report the development of dihydropyrrolopyridinone-based inhibitors for PKN2 and its closest homologue, PKN1, and their associated structure-activity relationship (SAR). Our studies identified a range of molecules with high potency exemplified by compound 8 with Ki = 8 nM for PKN2 and 14x selectivity over PKN1. Membrane permeability and target engagement for PKN2 were assessed by a NanoBRET cellular assay. Importantly, good selectivity across the wider human kinome and other kinase family members was achieved. These compounds provide strong starting points for lead optimization to PKN1/2 development compounds.


Subject(s)
Antineoplastic Agents/pharmacology , Drug Development , Protein Kinase C/antagonists & inhibitors , Protein Kinase Inhibitors/pharmacology , Pyridones/pharmacology , Pyrroles/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Cell Proliferation/drug effects , Cell Survival/drug effects , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , HeLa Cells , Humans , Molecular Docking Simulation , Molecular Structure , Protein Kinase C/metabolism , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/chemistry , Pyridones/chemical synthesis , Pyridones/chemistry , Pyrroles/chemical synthesis , Pyrroles/chemistry , Structure-Activity Relationship
5.
Bioorg Med Chem Lett ; 61: 128612, 2022 04 01.
Article in English | MEDLINE | ID: mdl-35143983

ABSTRACT

A deepening understanding of the relationship between transient receptor potential canonical channel 5 (TRPC5) and chronic kidney disease (CKD), has led to the emergence of several types of TRPC5 inhibitors displaying clear therapeutic effect. Herein, we report the synthesis and biological evaluation of a series of pyrroledione TRPC5 inhibitors, culminating in the discovery of compound 16g with subtype selectivity. Compared with GFB-8438, a potent TRPC5 inhibitor (Goldfinch Bio), compound 16g showed improved inhibition of TRPC5 and enhanced protective effect against protamine sulfates (PS)-induced podocyte injury in vitro. In addition, compound 16g did not induce cell death in primary cultured hepatocytes and immortalized podocytes in a preliminary toxicity assessment, indicating its utility as a potent and safe inhibitor for studying the function of TRPC5.


Subject(s)
Drug Discovery , Pyrroles/pharmacology , TRPC Cation Channels/antagonists & inhibitors , Dose-Response Relationship, Drug , Humans , Molecular Structure , Podocytes/drug effects , Podocytes/metabolism , Podocytes/pathology , Protamines , Pyrroles/chemical synthesis , Pyrroles/chemistry , Structure-Activity Relationship , TRPC Cation Channels/metabolism
6.
Chem Commun (Camb) ; 58(14): 2379-2382, 2022 Feb 15.
Article in English | MEDLINE | ID: mdl-35080540

ABSTRACT

Herein, a new strategy for the direct synthesis of functionalized pyrroles from ß-amino alcohols and ynones via ruthenium-catalyzed acceptorless dehydrogenative coupling has been demonstrated. This developed methodology proceeds in an atom- and step-economic fashion together with the merits of broad substrate scope, operational simplicity, and water and hydrogen gas as the sole by-products, which provides an alternative and sustainable way to access functionalized pyrroles. Further, this method was applied to the rapid synthesis of the COX-1/COX-2 inhibitor and boron dipyrromethene derivative successfully.


Subject(s)
Amino Alcohols/chemistry , Ketones/chemistry , Pyrroles/chemical synthesis , Ruthenium/chemistry , Catalysis , Hydrogenation , Molecular Structure , Pyrroles/chemistry
7.
Chem Biodivers ; 19(1): e202100584, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34752012

ABSTRACT

Synthesis of novel C3-substituted 5,6-dihydropyrrolo[2,1-a]isoquinolines via a three-component domino reaction of 1-aroyl-3,4-dihydroisoquinolines, terminal alkynes and CH-acids under microwave irradiation in dry acetonitrile is described. The method developed enables the obtainment of highly functionalized compounds with pharmacophore groups, which are potentially biologically active.


Subject(s)
Isoquinolines/chemistry , Pyrroles/chemistry , Alkynes/chemistry , Cycloaddition Reaction , Isoquinolines/chemical synthesis , Magnetic Resonance Spectroscopy , Microwaves , Molecular Conformation , Pyrroles/chemical synthesis
8.
Bioorg Med Chem Lett ; 55: 128451, 2022 01 01.
Article in English | MEDLINE | ID: mdl-34774741

ABSTRACT

JAK inhibitors have been considered as useful targets for the treatment of related diseases. However, first-generation JAK inhibitors have side effects such as anemia, thrombocytopenia, neutropenia and headaches which have been suggested to result from high JAK2 inhibition. Second-generation JAK inhibitors with more specific JAK isozyme inhibition have been studied to eliminate these adverse effects. In this study, novel 4-(1,5- or 2,5-triazole)-pyrrolopyrimidine derivatives with aromatic moieties were synthesized as JAK1 inhibitors, and an in vitro enzyme assay was used to evaluate the JAK inhibitory effects. Among these JAK1 inhibitors, the compound 23a showed an IC50 level of 72 nM, as well as being selective against other JAKs by 12 times or more: the results of molecular docking studies suggested that the high JAK1 selectivity resulted from a key interaction between the iodine atom of compound 23a and His-885 of hJAK1.


Subject(s)
Janus Kinase 1/antagonists & inhibitors , Janus Kinase Inhibitors/pharmacology , Pyrimidines/pharmacology , Pyrroles/pharmacology , Triazoles/pharmacology , Crystallography, X-Ray , Dose-Response Relationship, Drug , Humans , Janus Kinase 1/metabolism , Janus Kinase Inhibitors/chemical synthesis , Janus Kinase Inhibitors/chemistry , Models, Molecular , Molecular Structure , Pyrimidines/chemical synthesis , Pyrimidines/chemistry , Pyrroles/chemical synthesis , Pyrroles/chemistry , Structure-Activity Relationship , Triazoles/chemical synthesis , Triazoles/chemistry
9.
Eur J Med Chem ; 227: 113953, 2022 Jan 05.
Article in English | MEDLINE | ID: mdl-34731760

ABSTRACT

As epigenetic readers, bromodomain and extra-terminal domain (BET) family proteins bind to acetylated-lysine residues in histones and recruit protein complexes to promote transcription initiation and elongation. Inhibition of BET bromodomains by small molecule inhibitors has emerged as a promising therapeutic strategy for cancer. Herein, we describe our efforts toward the discovery of a novel series of 1-(5-(1H-benzo[d]imidazole-2-yl)-2,4-dimethyl-1H-pyrrol-3-yl)ethan-1-one derivatives as BET inhibitors. Intensive structural modifications led to the identification of compound 35f as the most active inhibitor of BET BRD4 with selectivity against BET family proteins. Further biological studies revealed that compound 35f can arrest the cell cycle in G0/G1 phase and induce apoptosis via decreasing the expression of c-Myc and other proteins related to cell cycle and apoptosis. More importantly, compound 35f showed favorable pharmacokinetic properties and antitumor efficacy in MV4-11 mouse xenograft model with acceptable tolerability. These results indicated that BET inhibitors could be potentially used to treat hematologic malignancies and some solid tumors.


Subject(s)
Alcohols/pharmacology , Antineoplastic Agents/pharmacology , Benzimidazoles/pharmacology , Cell Cycle Proteins/antagonists & inhibitors , Drug Discovery , Pyrroles/pharmacology , Transcription Factors/antagonists & inhibitors , Alcohols/chemical synthesis , Alcohols/chemistry , Animals , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Benzimidazoles/chemical synthesis , Benzimidazoles/chemistry , Cell Cycle Checkpoints/drug effects , Cell Cycle Proteins/metabolism , Cell Line, Tumor , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Female , Humans , Mice , Mice, Inbred BALB C , Mice, Nude , Molecular Structure , Neoplasms, Experimental/drug therapy , Neoplasms, Experimental/metabolism , Neoplasms, Experimental/pathology , Pyrroles/chemical synthesis , Pyrroles/chemistry , Structure-Activity Relationship , Transcription Factors/metabolism
10.
Eur J Med Chem ; 228: 113978, 2022 Jan 15.
Article in English | MEDLINE | ID: mdl-34810020

ABSTRACT

Focal adhesion kinase (FAK) promotes tumor progression by intracellular signal transduction and regulation of gene expression and protein turnover, which is a compelling therapeutic target for various cancer types, including ovarian cancer. However, the clinical responses of FAK inhibitors remain unsatisfactory. Here, we describe the discovery of FAK inhibitors using a scaffold hopping strategy. Structure-activity relationship (SAR) exploration identified 36 as a potent FAK inhibitor, which exhibited inhibitory activities against FAK signaling in vitro. Treatment with 36 not only decreased migration and invasion of PA-1 cells, but also reduced expression of MMP-2 and MMP-9. Moreover, 36 inhibited tumor growth and metastasis, and no obvious adverse effects were observed during the in vivo study. These results revealed the potential of FAK inhibitor 36 for treatment of ovarian cancer.


Subject(s)
Antineoplastic Agents/pharmacology , Focal Adhesion Kinase 1/antagonists & inhibitors , Indans/pharmacology , Ovarian Neoplasms/drug therapy , Protein Kinase Inhibitors/pharmacology , Pyrimidines/pharmacology , Pyrroles/pharmacology , Animals , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Dose-Response Relationship, Drug , Drug Design , Drug Screening Assays, Antitumor , Female , Focal Adhesion Kinase 1/metabolism , Humans , Indans/chemical synthesis , Indans/chemistry , Mice , Mice, Inbred BALB C , Mice, Nude , Microsomes, Liver/chemistry , Microsomes, Liver/metabolism , Molecular Structure , Neoplasms, Experimental/drug therapy , Neoplasms, Experimental/metabolism , Neoplasms, Experimental/pathology , Ovarian Neoplasms/metabolism , Ovarian Neoplasms/pathology , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/chemistry , Pyrimidines/chemical synthesis , Pyrimidines/chemistry , Pyrroles/chemical synthesis , Pyrroles/chemistry , Structure-Activity Relationship , Tumor Cells, Cultured
11.
Arch Pharm (Weinheim) ; 355(1): e2100242, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34609760

ABSTRACT

Human carbonic anhydrase (hCA) isoenzymes are zinc ion-containing, widespread metalloenzymes and they classically play a role in pH homeostasis maintenance. CA inhibitors suppress the CA activity and their usage has been clinically established as antiglaucoma agents, antiepileptics, diuretics, and in some other disorders. Alzheimer's disease (AD) is a slowly progressive neurodegenerative disorder and a fatal disease of the brain. An advanced method to cure AD includes the strategy to design acetylcholinesterase (AChE) inhibitors. A novel series of pyrrole-3-one derivatives containing sulfa drugs (5a-i) were determined to be highly potent inhibitors for AChE and hCA I and hCA II (inhibitory constant [Ki ] values are in the range of 6.50 ± 1.02-37.46 ± 4.12 nM, 1.20 ± 0.19-44.21 ± 1.09 nM, and 8.93 ± 1.58-46.86 ± 8.41 nM for AChE, hCA I, and hCA II, respectively). The designed compounds often show a more effective inhibition than the chemicals used as the standard. Among these compounds, 5f was the most effective compound against hCA I, and compound 5e was the most effective compound against hCA II. It was determined that compound 5c was the most effective inhibitor for AChE.


Subject(s)
Carbonic Anhydrase Inhibitors/pharmacology , Cholinesterase Inhibitors/pharmacology , Pyrroles/pharmacology , Sulfonamides/pharmacology , Carbonic Anhydrase I/antagonists & inhibitors , Carbonic Anhydrase II/antagonists & inhibitors , Carbonic Anhydrase Inhibitors/chemical synthesis , Carbonic Anhydrase Inhibitors/chemistry , Cholinesterase Inhibitors/chemical synthesis , Cholinesterase Inhibitors/chemistry , Humans , Isoenzymes , Pyrroles/chemical synthesis , Pyrroles/chemistry , Structure-Activity Relationship , Sulfonamides/chemical synthesis , Sulfonamides/chemistry
12.
Molecules ; 26(23)2021 Nov 26.
Article in English | MEDLINE | ID: mdl-34885757

ABSTRACT

The 3-hydroxy-1,5-dihydro-2H-pyrrol-2-one motif is a valuable scaffold in drug discovery. The replacement of the 3-oxy fragment in 3-hydroxy-1,5-dihydro-2H-pyrrol-2-ones-based compounds with a 3-amino one (3-amino analogs of 3-hydroxy-1,5-dihydro-2H-pyrrol-2-ones, 3-amino-1,5-dihydro-2H-pyrrol-2-ones) can play a crucial role in their biological effect. Thus, approaches to 3-amino-1,5-dihydro-2H-pyrrol-2-ones are of significant interest. We developed an approach to 5-spiro-substituted 3-amino-1,5-dihydro-2H-pyrrol-2-ones that could not be obtained using previously reported approaches (reactions of 3-hydroxy-1,5-dihydro-2H-pyrrol-2-ones with amines). The developed approach is based on the thermal decomposition of 1,3-disubstituted urea derivatives of 5-spiro-substituted 3-hydroxy-1,5-dihydro-2H-pyrrol-2-ones, which were prepared via their reaction with carbodiimides.


Subject(s)
Amines/chemistry , Drug Discovery , Pyrroles/chemistry , Amination , Carbodiimides/chemistry , Molecular Structure , Pyrroles/chemical synthesis
13.
J Am Chem Soc ; 143(50): 21258-21263, 2021 12 22.
Article in English | MEDLINE | ID: mdl-34879199

ABSTRACT

The complex and intriguing structures of the antibiotics amycolamicin and kibdelomycin are herein confirmed through total synthesis. Careful titration of the synthetic products reveals that kibdelomycin is the salt form of amycolamicin. This synthesis employs a highly convergent strategy, which provides a modular approach for further SAR studies of this class of antibiotics.


Subject(s)
Anti-Bacterial Agents/chemical synthesis , Glucosides/chemical synthesis , Pyrroles/chemical synthesis , Pyrrolidinones/chemical synthesis , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Biological Products/chemical synthesis , Biological Products/chemistry , Crystallography, X-Ray , Drug Resistance, Bacterial/drug effects , Glucosides/chemistry , Glucosides/pharmacology , Gram-Positive Bacteria/drug effects , Molecular Conformation , Pyrroles/chemistry , Pyrroles/pharmacology , Pyrrolidinones/chemistry , Pyrrolidinones/pharmacology
14.
Molecules ; 26(21)2021 Oct 25.
Article in English | MEDLINE | ID: mdl-34770844

ABSTRACT

A series of new pyrrole derivatives were designed as chemical analogs of the 1,4-dihydropyridines drugs in order to develop future new calcium channel blockers. The new tri- and tetra-substituted N-arylpyrroles were synthesized by the one-pot reaction of 1-methyl-3-cyanomethyl benzimidazolium bromide with substituted alkynes having at least one electron-withdrawing substituent, in 1,2-epoxybutane, acting both as the solvent and reagent to generate the corresponding benzimidazolium N3-ylide. The structural characterization of the new substituted pyrroles was based on IR, NMR spectroscopy as well as on single crystal X-ray analysis. The toxicity of the new compounds was assessed on the plant cell using Triticum aestivum L. species and on the animal cell using Artemia franciscana Kellogg and Daphnia magna Straus crustaceans. The compounds showed minimal phytotoxicity on Triticum rootlets and virtually no acute toxicity on Artemia nauplii, while on Daphnia magna, it induced moderate to high toxicity, similar to nifedipine. Our research indicates that the newly synthetized pyrrole derivatives are promising molecules with biological activity and low acute toxicity.


Subject(s)
Alkynes/chemistry , Benzimidazoles/chemistry , Bromides/chemistry , Pyrroles/chemical synthesis , Pyrroles/toxicity , Chemistry Techniques, Synthetic , Models, Molecular , Molecular Structure , Pyrroles/chemistry , Spectrum Analysis , Toxicity Tests , Toxicology/methods
15.
Molecules ; 26(19)2021 Sep 24.
Article in English | MEDLINE | ID: mdl-34641324

ABSTRACT

Microtubule targeting agents (MTAs) that interfere with the dynamic state of the mitotic spindle are well-known and effective chemotherapeutic agents. These agents interrupt the microtubule network via polymerization or depolymerization, halting the cell cycle progression and leading to apoptosis. We report two novel pyrrole-based carboxamides (CAs) (CA-61 and -84) as the compounds exhibiting potent anti-cancer properties against a broad spectrum of epithelial cancer cell lines, including breast, lung, and prostate cancer. The anti-cancer activity of CAs is due to their ability to interfere with the microtubules network and inhibit tubulin polymerization. Molecular docking demonstrated an efficient binding between these ligands and the colchicine-binding site on the tubulin. CA-61 formed two hydrogen bond interactions with THR 179 (B) and THR 353 (B), whereas two hydrogen bonds with LYS 254 (B) and 1 with ASN 101 (A) were identified for CA-84. The binding energy for CA-84 and CA-61 was -9.910 kcal/mol and -9.390 kcal/mol. A tubulin polymerization assay revealed a strong inhibition of tubulin polymerization induced by CA-61 and -84. The immunofluorescence data revealed the disruption of the tubulin assembly in CA-treated cancer cells. As an outcome of the tubulin inhibition, these compounds halted the cell cycle progression in the G2/M phase, leading to the accumulation of the mitotic cells, and further induced apoptosis. Lastly, the in vivo study indicated that CAs significantly inhibited the HCC1806 breast cancer xenograft tumor growth in a nude mouse model. Collectively, we identified the novel CAs as potent MTAs, inhibiting tubulin polymerization via binding to the colchicine-binding site, disrupting the microtubule network, and exhibiting potent pro-apoptotic activities against the epithelial cancer cell lines both in vitro and in vivo.


Subject(s)
Antineoplastic Agents/administration & dosage , Breast Neoplasms/drug therapy , Colchicine/metabolism , Pyrroles/administration & dosage , Tubulin Modulators/administration & dosage , Animals , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Binding Sites , Cell Line, Tumor , Cell Proliferation/drug effects , Drug Design , Female , Mice , Mice, Nude , Molecular Conformation , Molecular Docking Simulation , Molecular Structure , Pyrroles/chemical synthesis , Pyrroles/chemistry , Pyrroles/pharmacology , Structure-Activity Relationship , Tubulin Modulators/chemical synthesis , Tubulin Modulators/chemistry , Tubulin Modulators/pharmacology , Xenograft Model Antitumor Assays
16.
J Am Chem Soc ; 143(43): 18121-18130, 2021 11 03.
Article in English | MEDLINE | ID: mdl-34698493

ABSTRACT

Enzymes exert control over the reactivity of metal centers with precise tuning of the secondary coordination sphere of active sites. One particularly elegant illustration of this principle is in the controlled delivery of proton and electron equivalents in order to activate abundant but kinetically inert oxidants such as O2 for oxidative chemistry. Chemists have drawn inspiration from biology in designing molecular systems where the secondary coordination sphere can shuttle protons or electrons to substrates. However, a biomimetic activation of O2 requires the transfer of both protons and electrons, and molecular systems where ancillary ligands are designed to provide both of these equivalents are comparatively rare. Here, we report the use of a dihydrazonopyrrole (DHP) ligand complexed to Fe to perform exactly such a biomimetic activation of O2. In the presence of O2, this complex directly generates a high spin Fe(III)-hydroperoxo intermediate which features a DHP• ligand radical via ligand-based transfer of an H atom. This system displays oxidative reactivity and ultimately releases hydrogen peroxide, providing insight on how secondary coordination sphere interactions influence the evolution of oxidizing intermediates in Fe-mediated aerobic oxidations.


Subject(s)
Coordination Complexes/chemistry , Oxygen/chemistry , Peroxides/chemistry , Coordination Complexes/chemical synthesis , Hydrazones/chemical synthesis , Hydrazones/chemistry , Iron/chemistry , Ligands , Oxidation-Reduction , Pyrroles/chemical synthesis , Pyrroles/chemistry
17.
J Enzyme Inhib Med Chem ; 36(1): 2183-2198, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34602000

ABSTRACT

Pyrroles and its fused forms possess antimicrobial activities, they can easily interact with biomolecules of living systems. A series of substituted pyrroles, and its fused pyrimidines and triazines forms have been synthesised, all newly synthesised compound structures were confirmed by spectroscopic analysis. Generally, the compounds inhibited growth of some important human pathogens, the best effect was given by: 2a, 3c, 4d on Gram-positive bacteria and was higher on yeast (C. albicans), by 5c on Gram-negative bacteria and by 5a then 3c on filamentous fungi (A. fumigatus and F. oxysporum). Such results present good antibacterial and antifungal potential candidates to help overcome the global problem of antibiotic resistance and opportunistic infections outbreak. Compound 3c gave the best anti-phytopathogenic effect at a 50-fold lower concentration than Kocide 2000, introducing a safe commercial candidate for agricultural use. The effect of the compounds on DNA was monitored to detect the mode of action.


Subject(s)
Anti-Bacterial Agents/pharmacology , Antifungal Agents/pharmacology , Fungi/drug effects , Gram-Negative Bacteria/drug effects , Gram-Positive Bacteria/drug effects , Pyrroles/pharmacology , Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/chemistry , Antifungal Agents/chemical synthesis , Antifungal Agents/chemistry , Dose-Response Relationship, Drug , Humans , Microbial Sensitivity Tests , Molecular Structure , Pyrroles/chemical synthesis , Pyrroles/chemistry , Structure-Activity Relationship
18.
J Mater Chem B ; 9(42): 8842-8850, 2021 11 03.
Article in English | MEDLINE | ID: mdl-34647119

ABSTRACT

Leucine aminopeptidase (LAP) is a vital proteolytic enzyme, and its overexpression is often associated with many physiological diseases, such as liver dysfunction and breast cancer. Therefore, the accurate measurement of LAP concentrations in cells is critical for the diagnosis and prevention of related diseases. Herein, a new ratiometric fluorescent probe, DPP-Leu, based on diketopyrrolopyrrole (DPP) was designed and synthesized for LAP detection based on the specific enzymatic cleavage of the N-terminal leucine residue. The fluorescence intensity ratio of DPP-Leu (I548/I651) showed a remarkable change in the presence of LAP, with a limit of detection of 0.011 U L-1, and DPP-Leu was successfully applied to detect LAP in fetal bovine serum (FBS) and artificial urine. Cell imaging experiments revealed that DPP-Leu could target mitochondria and distinguish tumor cells with high LAP content from normal cells. Importantly, benefiting from the structural transformation of DPP-Leu to the photosensitizer 4 under LAP catalysis, the probe could kill tumor cells under light irradiation without damaging normal cells.


Subject(s)
Antineoplastic Agents/pharmacology , Fluorescent Dyes/pharmacology , Ketones/pharmacology , Leucyl Aminopeptidase/analysis , Optical Imaging , Photochemotherapy , Photosensitizing Agents/pharmacology , Pyrroles/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Cell Proliferation/drug effects , Cells, Cultured , Drug Screening Assays, Antitumor , Fluorescent Dyes/chemical synthesis , Fluorescent Dyes/chemistry , Humans , Hydrogen-Ion Concentration , Ketones/chemical synthesis , Ketones/chemistry , Leucyl Aminopeptidase/metabolism , Photosensitizing Agents/chemical synthesis , Photosensitizing Agents/chemistry , Pyrroles/chemical synthesis , Pyrroles/chemistry , Reactive Oxygen Species/metabolism
19.
Eur J Med Chem ; 225: 113820, 2021 Dec 05.
Article in English | MEDLINE | ID: mdl-34509879

ABSTRACT

Bruton's tyrosine kinase (BTK) is a key drug target for B-cell related malignancies. Irreversible covalent BTK inhibitors have been approved for the treatment of B-cell malignancies, yet BTK C481S mutation at the covalent binding site has caused drug-resistance of BTK covalent binding inhibitors. The proteolysis targeting chimera (PROTAC) technology increases the sensitivity to drug-resistant targets compared to classic inhibitors, which provides a new strategy for mutant BTK related B-cell malignancies. ARQ531, a reversible non-covalent BTK inhibitor that inhibits wild type (WT) and mutated BTK with high selectivity, could be an ideal warhead for PROTACs targeting the mutant BTK. Herein, we designed a novel series of PROTACs using the selective non-covalent BTK inhibitor ARQ531 as warhead, with the goal of improving the degradation of both wild-type and C481S mutant BTKs, and increasing the selectivity of BTK over other kinases. This effort will provide some basis for further preclinical study of BTK PROTACs as a novel strategy for treatment of B-cell lymphomas.


Subject(s)
Agammaglobulinaemia Tyrosine Kinase/antagonists & inhibitors , Antineoplastic Agents/pharmacology , Drug Discovery , Lymphoma, B-Cell/drug therapy , Protein Kinase Inhibitors/pharmacology , Pyrans/pharmacology , Pyrimidines/pharmacology , Pyrroles/pharmacology , Agammaglobulinaemia Tyrosine Kinase/metabolism , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Cell Proliferation/drug effects , Cells, Cultured , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Humans , Lymphoma, B-Cell/metabolism , Lymphoma, B-Cell/pathology , Molecular Structure , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/chemistry , Proteolysis/drug effects , Pyrans/chemical synthesis , Pyrans/chemistry , Pyrimidines/chemical synthesis , Pyrimidines/chemistry , Pyrroles/chemical synthesis , Pyrroles/chemistry , Structure-Activity Relationship
20.
Eur J Med Chem ; 226: 113856, 2021 Dec 15.
Article in English | MEDLINE | ID: mdl-34547506

ABSTRACT

Retinol-binding protein 4 (RBP4) is a serum protein that transports Vitamin A. RBP4 is correlated with numerous diseases and metabolic syndromes, including insulin resistance in type 2 diabetes, cardiovascular diseases, obesity, and macular degeneration. Recently, RBP4 antagonists and protein synthesis inhibitors are under development to regulate the effect of RBP4. Several RBP4 antagonists, especially BPN-14136, have demonstrated promising safety profiles and potential therapeutic benefits in animal studies. Two RBP4 antagonists, specifically tinlarebant (Belite Bio) and STG-001 (Stargazer) are currently undergoing clinical trials. Some antidiabetic drugs and nutraceuticals have been reported to reduce RBP4 expression, but more clinical data is needed to evaluate their therapeutical benefits. As regulating RBP4 levels or its activities would benefit a wide range of patients, further research is highly recommended to develop clinically useful RBP4 antagonists or protein synthesis inhibitors.


Subject(s)
Carboxylic Acids/pharmacology , Drug Development , Protein Synthesis Inhibitors/pharmacology , Pyrimidines/pharmacology , Pyrroles/pharmacology , Retinol-Binding Proteins, Plasma/antagonists & inhibitors , Carboxylic Acids/chemical synthesis , Carboxylic Acids/chemistry , Humans , Protein Synthesis Inhibitors/chemical synthesis , Protein Synthesis Inhibitors/chemistry , Pyrimidines/chemical synthesis , Pyrimidines/chemistry , Pyrroles/chemical synthesis , Pyrroles/chemistry , Retinol-Binding Proteins, Plasma/biosynthesis
SELECTION OF CITATIONS
SEARCH DETAIL
...